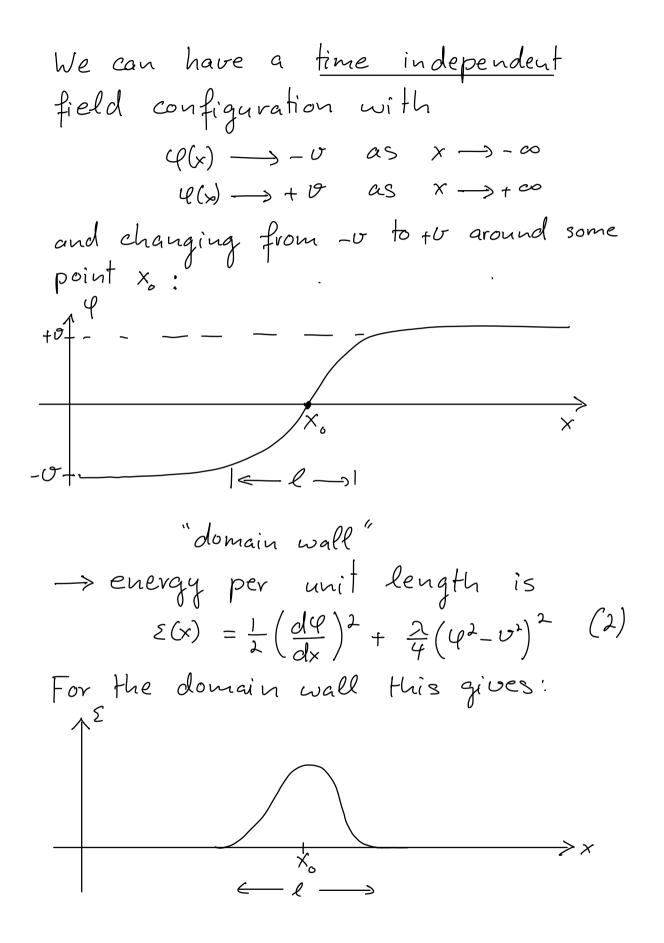
\$5.3 Solitons Consider the toy model $Z = \frac{1}{2} (24)^2 - V(4)$ with double-well potential (1) $V(\mathcal{Y}) = \frac{\lambda}{4} \left(\mathcal{Y}^2 - \mathcal{O}^2 \right)^2$ in (1+1)-dim. spacetime -> two vacua 4= to Pick one and study oscillations around it: $\Psi = \upsilon + \chi$ "symmetry breaking" (will study in QFT 2) -> expanding Z in X, one finds X describes particle with mass n=(202)2 From now on denote x as space and t as time



$$\rightarrow \text{ the total energy or mass is then:} \\ M = \int dx \, \mathcal{E}(x) \\ \text{consisting of the two contributions:} \\ \quad \text{``spatial variation'':} \\ \int dx \frac{1}{2} \left(\frac{d\varphi}{dx}\right)^2 \sim \ell\left(\frac{\psi}{e}\right)^2 \sim \frac{\psi^2}{e} \\ \quad \text{``potential energy'':} \\ \int dx \, \lambda \left(\frac{\varphi^2}{2} - \frac{\psi^2}{2}\right)^2 \sim \ell \lambda \, \psi^4$$

Minimizing the energy gives:

$$\frac{dM}{dl} = 0 \sim -\frac{U^2}{\ell^2} + \lambda u^4$$

$$\implies \frac{U^2}{\ell} \sim \ell \lambda u^4$$

$$\implies \ell \sim (\lambda u^2)^{-\frac{1}{2}} \sim \frac{1}{n} \implies mass: M \sim n\frac{u^2}{\lambda}$$
Thus we get a "lump of energy"
spread over a region of length $\ell \sim \frac{1}{n}$
 $\implies can boost to any velocity by
Zorentz inv. "soliton" or "kink"$

Topological stability
The kink is "topologically stable"
as it would cost an infinite amount
of energy to lift
$$\Psi(x)$$
 over the
polential barrier from x to + co
 \rightarrow in two dimensions have
conserved currents
 $J^{-} = \frac{1}{2\sigma} \mathcal{L}^{-} \mathcal{D}_{r} \Psi$ "topological
with charge
 $Q = \int dx J^{o}(x) = \frac{1}{2\sigma} [\Psi(too) - \Psi(-co)] = 1$
ordinary scaler particle has charge
 $Q = O \longrightarrow Kink cannot decay to
ardinary scala particles!
 $\frac{Q = O - Kink con ot decay}{O} = 0$
 $- Kink and antikink con annihilale
into scaler particles$$

Antikink Kink
Non-perturbative phenomena
Solitons (Kinks) are examples of
"non-perturbative" phenomena which
are ontside the range of
perturbation theory
(M ~ M M²
$$\rightarrow$$
 not detectable)
more precisely,
M = $\int dx \left[\frac{1}{2} \left(\frac{dy}{dx} \right)^2 + \frac{3}{4} \left(\frac{(y^2 - v^2)^2}{z + y^2} \right) \right]$
 $\int (y = Mx)$
 $\int (y = Mx)$

Vortices
Vortices are yet another example of
solitonic field configurations
(onsider complex scalar field in

$$(2+1)$$
-dim. spacetime with
 $\chi = \partial_{\mu} \varphi^{\dagger} \partial^{\mu} \varphi - \chi (\varphi^{\dagger} \varphi - \upsilon^{2})^{2}$
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 $g/$
 $=:V(\varphi)$
 \downarrow^{V}
 $g/$
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 \downarrow^{V}
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 \downarrow^{V}
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 \downarrow^{V}
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 \downarrow^{V}
 \downarrow^{V}
 \downarrow^{V}
 \downarrow^{V}
 $=:V(\varphi)$
 \downarrow^{V}
 $\downarrow^$

Consider the Ansatz
$$\varphi \rightarrow ve^{i\theta}$$
 in polar coordinates
 $\rightarrow \varphi = \varphi_{1} + i\varphi_{2}$ gives $(\varphi_{1}, \varphi_{2}) = v(\cos\theta_{1} \sin\theta)$
Recall the $SO(2) - current (S 3.1)$ $(\varphi = \pi)$
 $f_{1} = i(\partial_{1}\varphi^{\dagger}\varphi - \varphi^{\dagger}\partial_{1}\varphi)$
 $= i\left(\partial_{1}(\varphi_{1} - i\varphi_{2})(\varphi_{1} + i\varphi_{2}) - (\varphi_{1} - i\varphi_{2})\partial_{1}(\varphi_{1} + i\varphi_{2})\right)$
 $= 2\left[-\varphi_{2}\partial_{1}\varphi_{1} + \varphi_{1}\partial_{1}\varphi_{2}\right]$
 $\Rightarrow current whire about at spatial infinity
"v ortex", topological as $\varphi \rightarrow ve^{im\theta} \in \pi_{1}(S^{1})$
 $\Rightarrow have \partial_{1}\varphi \rightarrow v(\frac{1}{7})$ as $r \rightarrow \infty$
 $\Rightarrow for the term \partial_{1}\psi^{\dagger}\partial_{1}\varphi$ we then get
 $\int d^{2}x \partial_{1}\psi^{\dagger}\partial_{1}\varphi \xrightarrow{r \rightarrow \infty} v^{2}\int d^{2}x \frac{1}{72}$
 $euergy diverges logarithmically$
 $Cure:$
Gauge the theory: $\partial_{1}\varphi \rightarrow D_{1}\varphi = \partial_{1}\varphi - ieA_{1}\varphi$
Naw require $A_{1} \xrightarrow{r \rightarrow \infty} - \frac{i}{e} \frac{1}{1}\varphi_{2}\varphi^{\dagger}\partial_{1}\varphi$ so that $D_{1}\varphi^{-r \rightarrow \infty}$
 $\Rightarrow flux = \int d^{2}x F_{12} = \oint dx; A_{1} = \frac{2\pi}{e} \xrightarrow{r \rightarrow \infty} flux$$

$$\frac{Monopoles}{\chiet}$$

$$\frac{\chiet}{\chiet}$$

$$\frac{\chiet}{\chi$$

Solution is time-independent
$$\rightarrow A_{0}^{b} = 0$$

 $A_{1}^{b} \rightarrow magnetic \overline{B}$ field pointing
in radial direction!
"It Hooft-Polyakov monopole" solution
flux $\int d\overline{S} \cdot \overline{B}$ is again quantized as for the
Dirac monopole
mass is given by
 $M = \int d^{3}x \left[\frac{1}{4} (F_{17})^{2} + \frac{1}{2} (D_{1} \cdot \overline{Q})^{2} + N(\overline{q}) \right]$
we have
 $\frac{1}{4} (\overline{F_{17}})^{2} + \frac{1}{2} (D_{1} \cdot \overline{\varphi})^{2} = \frac{1}{4} (\overline{F_{13}} \pm s_{1jk} D_{k} \cdot \overline{\varphi})^{2}$
 $\mp \frac{1}{2} s_{1jk} \overline{F_{13}} \cdot D_{k} \cdot \overline{\varphi}$
 $\rightarrow M \ge \int d^{3}x \left[\overline{\mp} \sum_{ijk} F_{ij} \cdot D_{k} \cdot \overline{\varphi} + V(\overline{q}) \right]$
and
 $\int d^{3}x \frac{1}{4} s_{ijk} \cdot \overline{F_{13}} \cdot D_{k} \cdot \overline{\varphi} = \int d^{3}x \frac{1}{4} s_{1jk} \cdot \partial_{k} (\overline{F_{13}} \cdot \overline{\varphi})$
 $= 0 \int d\overline{S} \cdot \overline{B} = 4\pi 0 g$
 $for |\overline{q}|_{\overline{rrow}} \cdot V(\overline{q}) = 0$
 $\rightarrow M = 4\pi 0 g$ for $\overline{F_{13}} = \pm s_{1jk} D_{k} \cdot \overline{\varphi}$
"Bogomol'nyi-Prasad-Sommerfeld" or "BPS"-state